MULTI-AXLE LOAD IDENTIFICATION IN LABORATORY

Ling YU, Ph.D T. H. T. CHAN, Associate Professor

Department of Civil and Structural Engineering
The Hong Kong Polytechnic University

Contents

- **NPurposes**
- **AIdentification Methods**
- **@Experiments in Laboratory**
- **Multi-axle Load Identification**
- *2* Conclusions

Purposes

- **Present two methods on moving axle load identification**
- **I** Evaluate effects of various parameters on two methods
- Assess feasibility and robustness of two solutions, which are involved in two methods

1) Equation of Motion

Figure 1. Moving forces on beam bridges

$$\rho \frac{\partial^2 v(x,t)}{\partial^2 t} + C \frac{\partial v(x,t)}{\partial t} + EI \frac{\partial^4 v(x,t)}{\partial x^4} = \delta(x - ct)P(t)$$
 (1)

$$\ddot{q}_n(t) + 2\xi_n \omega_n \dot{q}(t) + \omega_n^2 q_n(t) = \frac{2}{\rho L} p_n(t) \qquad (n = 1, 2, \dots, \infty) \quad (2)$$

2a) Time Domain Method (TDM)

Modal Displacement:

$$q_n(t) = \frac{2}{\rho L} \int_0^t h_n(t - \tau) p(\tau) d\tau \tag{3}$$

Dynamic Deflection:

$$v(x,t) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{L} q_n(t)$$
 (4)

$$\nu(x,t) = \sum_{n=1}^{\infty} \frac{2}{\rho L \omega_n} \sin \frac{n\pi x}{L} \int_0^t e^{-\xi_n \omega_n(t-\tau)} \sin \omega_n'(t-\tau) \sin \frac{n\pi c\tau}{L} P(\tau) d\tau$$
(5)

2b) Time Domain Method (TDM)

Bending moment m(x,t) in time domain is

$$m(x,t) = -EI \frac{\partial^2 v(x,t)}{\partial x^2}$$

$$=\sum_{n=1}^{\infty} \frac{2EI\pi^{2}n^{2}}{\rho L^{3}\omega_{n}'} \sin\frac{n\pi x}{L} \int_{0}^{t} e^{-\xi_{n}\omega_{n}(t-\tau)} \sin\omega_{n}'(t-\tau) \sin\frac{n\pi c\tau}{L} P(\tau) d\tau$$
(6)

$$B_{N\times N_B} P_{N_B\times 1} = R_{N\times 1} \tag{7}$$

Then, moving axle load P(t) can be identified by solving simultaneous equations (7) in time domain.

3a) Frequency-Time Domain Method (FTDM)

Dynamic deflection in Eq.(4) in frequency domain is

$$V(x,\omega) = \sum_{n=1}^{\infty} \frac{2}{\rho L} \Phi_n(x) H_n(\omega) P(\omega)$$
 (8)

Here,

$$H_n(\omega) = \frac{1}{\omega_n^2 - \omega^2 + 2\xi_n \omega_n \omega}$$

$$\Phi_n(x) = \sin(n\pi x/L)$$

$$P(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} p_n(t) e^{-i\omega t} dt$$

3b) Frequency-Time Domain Method (FTDM)

Eq. (8) can be rearranged as

$$A_{(N+2)\times(N+2)}F_{(N+2)\times1} = V_{(N+2)\times1}$$
(9)

Similarly, bending moment (R) in frequency domain is

$$D_{N\times N_P}P_{N_P\times 1}=R_{N\times 1} \qquad \qquad \textbf{(10)}$$

$$P(\omega) \to P(t)$$
 (11)

4a) Solutions

Equations (7) and (10) become:

$$Ax = b \tag{12}$$

Where,

A--- system matrix, known

b--- response vector, known

x--- force vector, unknown

4b) Solutions

II Pseudo Inverse (PI) solution

$$x = A^{+} b = [(A^{T} A)^{-1} A^{T}] b$$
 (13)

 \coprod **SVD solution** (*if* $A = USV^T$)

$$x = (VS^{-1}U^{T})b (14)$$

Experiments in Laboratory

1) Setup

Strain gauges and accelerometers

Material: mild steel

1) Definition of Error

Relative Percentage Error (RPE):

$$RPE = \frac{\sum \left| f_{true} - f_{identified} \right|}{\sum \left| f_{true} \right|} \times 100\%$$
 (15)

$$f_{true} \Leftrightarrow R_{measured}$$

$$f_{identified} \Leftrightarrow R_{rebuilt}$$

Accepted Tolerance:

RPE<10%

2) Study Scheme

- **Aim at evaluating effects of parameters on TDM and FTDM**
- **Operation** Parameters:
 - Mode number of bridge
 - Measurement stations
 - **M**Vehicle frame
 - Suspension system

3.1) Effect of Mode Number (MN)

Method	MN	Sta.1	Sta.2	Sta.3	Sta.4	Sta.5	Sta.6	Sta.7
	5	10.86	10.32	25.66	8.55	2.80	3.58	11.9 <mark>7</mark>
		10.87	10.34	25.64	8.56	2.80	3.57	11.99
TDM	6	<mark>16.14</mark>	6.88	27.83	8.19	3.47	7.69	15.58
		<u>16.14</u>	<u>6.88</u>	<u>27.82</u>	<u>8.20</u>	<u>3.46</u>	<u>7.69</u>	<u>15.57</u>
	7	19.31	8.50	25.14	6.16	6.01	7.08	15.53
		<u>19.31</u>	<u>8.50</u>	<u>25.13</u>	<u>6.16</u>	<u>6.01</u>	<u>7.08</u>	<u>15.53</u>
	5	8.44	8.97	24.29	7.71	3.15	4.07	3.89
FTDM		115.00	81.28	74.61	42.35	52.17	78.31	119.40
	6	7.28	7.78	24.23	7.72	4.92	4.22	5.46
		7.50	7.79	24.18	7.74	4.95	4.27	5.59
	7	7.06	7.53	24.02	7.13	4.26	3.33	3.52
		7.36	<u>7.61</u>	23.95	<u>7.13</u>	4.29	3.40	3.67

Note: Underlined values for PI, others for SVD.

ญ Remarks

- For TDM, no difference either using PI or SVD. Accuracy increases with MN. The worst occurs at 3rd station.
- For FTDM, SVD clearly better than PI. Accuracy independent of MN after MN=5. The worse occurs at 3rd station. FTDM better than TDM.

3.2a) Effect of Measurement Stations

		RPE (%)						
Method	MN	Sta.1	Sta.2	Sta.4	Sta.5	Sta.6	Sta.7	
TDM	5	5.19	3.92	1.97	2.46	2.50	5.20	
	6	7.81	3.04	2.26	2.78	3.46	8.81	
	7	9.08	3.81	3.01	2.33	3.47	8.74	
FTDM	5	2.44	1.58	1.19	1.60	2.27	3.15	
	6	2.04	1.58	1.26	1.56	1.76	2.43	
	7	1.95	1.50	1.16	1.39	1.68	2.36	

Note: Only for SVD.

ญ Remarks

- After elimination of 3rd station, accuracy are very much improved.
- All RPE values are less than 10%, FTDM is better than TDM.

3.2b) Effect of Measurement Stations

Remarks

The identified three-axle loads are better and reasonable, FTDM better than TDM. Elimination of significant error data is appropriate.

3.3) Effect of Vehicle Frame

ิ Remarks

- The identified three-axle loads are better and reasonable.
- The identified results are correct even the second axle is hanging in the air.

3.4) Effect of Suspension System

Vehicle	Method	RPE (%)						
		Sta.1	Sta.2	Sta.4	Sta.5	Sta.6	Sta.7	
288NA, 31.27 <i>Hz</i>	TDM	5.86	6.38	4.45	4.31	5.06	9.82	
Rigid connection	FTDM	14.02	8.04	6.90	6.48	7.80	16.85	
288NAS3, 30.2 <i>Hz</i>	TDM	4.85	5.34	3.55	3.08	3.96	6.82	
Suspend at 3 rd axle	FTDM	4.33	5.00	3.15	3.07	4.25	7.06	
288NAS23, 14.15 <i>Hz</i>	TDM	4.45	4.47	3.25	3.09	3.13	4.99	
Suspend at 2 nd and 3 rd axles	FTDM	3.90	3.88	2.69	3.03	3.53	4.65	
288NAP3, 10.97 <i>Hz</i>	TDM	7.86	5.62	3.20	2.75	2.85	5.23	
Suspend at 2 nd and 3 rd axles	FTDM	4.11	5.04	2.75	2.61	2.90	4.56	

Note: Underlined for pre-compressed spring case..

ญ Remarks

- Fundamental frequency decrease with increment of suspension.
- Accuracy increase with the suspension. FTDM better than TDM.
- Both TDM & FTDM can be efficiently applied to multi-axle load identification.

Conclusions

- → Both TDM and FTDM methods have been successfully applied to the multi-axle load identification. They can efficiently and correctly identify multi-axle moving loads even if the middle axle is hanging in the air.
- **→ SVD solution is obviously better than PI, especially for FTDM.**
- → Identification accuracy increases with mode number. More stations providing high quality responses would be adopted. Error responses at some stations would be appropriately eliminated.
- The vehicle fundamental frequency is varied significantly with the suspension systems. It is evidently beneficial to identification accuracy when suspending and increasing the suspension systems to the non-articulated vehicles.

Thank You for Your Attendance!